ISO 17025 認定取得推進（H17）—試験所間比較（長さ）—

ISO 17025 取得推進プロジェクト

真下寛治*, 細谷 職*, 小谷雄二**

鎌木哲志*, 田辺佳彦***, 中澤裕士***

Program for Laboratory Accreditation to ISO 17025 in Gunma Prefectural Industrial Technology Research Laboratory

Kanji MASHIMO, Hajime HOSOYA, Yuji KOTANI, Tetsushi KABURAGI, Yoshihiko TANABE and Yuji NAKAZAWA

製品・部品を測定・試験したデータの信頼性を確保するために、ISO 17025 に基づく認定試験所が求められている。センターでは、平成17年2月に長さ（端度器：ブロックゲージ）でJCSS（MRA）の認定を受けた。今回、ブロックゲージの試験所間比較に参加した結果で、ブロックゲージの校正能力をあげて確認した。

キーワード：校正、試験所間比較、JCSS

Accredited testing laboratories and calibration laboratories are required in order to ensure the reliability of data obtained by measuring or testing products and parts. In 2005, we participated in an interlaboratory comparison for length and it's proved again that we can calibrate the length with sufficient uncertainty.

Key Word: calibration, interlaboratory comparison, accreditation, JCSS

1 まえがき

ISO/IEC 17025 の要求する技能試験として（財）日本品質保証機構（JQA）により実施された、JCSS 技能試験（長さ）に参加した。その概要を以下に報告する。JCSS 登録に関わる要求事項として国際相互承認協定（MRA）対応認定事業者は少なくとも4年に1回の参加が必要となる。（独）製品評価技術基盤機構認定センターでは認定機関として認定センター自身が運営する技能試験も行うが、可能な場合は部以外で技術能力をもった機関が実施する技能試験を「外部技能試験プログラム」として承認し活用している。

今回は線度器（標準尺）及び端度器（ブロックゲージ）について行われ、当センターでは端度器（ブロックゲージ）の光波干渉測定に参加した。

2 実施方法

2.1 実施概要

表1に実施概要を示す。| 表1 実施概要 |
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>試験分野</td>
</tr>
<tr>
<td>実施期間</td>
</tr>
<tr>
<td>参加試験所数</td>
</tr>
<tr>
<td>測定方法</td>
</tr>
<tr>
<td>参照機関</td>
</tr>
<tr>
<td>実施機関</td>
</tr>
</tbody>
</table>

2.2 実施条件
本実験では、参加機関の間で仲介者
の持ち回り校正を実施し、参加機関と参加基
値の校正値及び不確かな比較から技術能力を
評価する方法で行った。持ち回り方式は、参
照値を基準とする校正所間比較スケーム
（ラウンドロビン方式）で行い、参照値の決
定は、参照機関が行う。詳細については、技
能試験指示書にまとめられ、本技能試験スイ
ームへの全参加機関に配布される。

2.3 校正に使用する仲介者
仲介者の材質は全て鋼製で、寸法は1mm、
3mm、5mm、10mm、25mm、
50mm、100mmの8種類であるが、当
センターでは認定校正範囲から1mm～100
mmまでについて実施した。仲介者は専用輸送
箱に収納し、持ち回った。

2.4 E_n数による評価
結果の評価は、参照値と不確かな及び参加値
から提出された校正値と不確かな校正機関がJIS
0043-1
の付属書Aに記載された統計手法のうち、E_n
数による評価を実施する。E_n数の計算は次
式により求められる。

$$E_n = \frac{X_{Lab} - X_{Ref}}{\sqrt{U_{Lab}^2 + U_{Ref}^2}}$$

ここで、X_{Lab}: 参加機関の校正值
X_{Ref}: 参照機関の参照值
U_{Lab}: 参加機関の校正不確かな
(k = 2)
U_{Ref}: 参照機関の校正不確かな
(k = 2)
評価式として、以下の式を使用する。
$|E_n| \leq 1$: 合格
$|E_n| > 1$: 不合格

3 評価結果
表2に参加機関のE_nによる評価結果を

<table>
<thead>
<tr>
<th>容量 (mm)</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.003</td>
<td>0.02合格</td>
<td>0.18合格</td>
<td>0.36合格</td>
<td>0.05合格</td>
</tr>
<tr>
<td>3</td>
<td>0.30合格</td>
<td>0.09合格</td>
<td>0.02合格</td>
<td>0.14合格</td>
</tr>
<tr>
<td>15</td>
<td>0.00合格</td>
<td>0.46合格</td>
<td>0.09合格</td>
<td>0.00合格</td>
</tr>
<tr>
<td>50</td>
<td>0.35合格</td>
<td>0.18合格</td>
<td>0.15合格</td>
<td>0.18合格</td>
</tr>
<tr>
<td>100</td>
<td>0.79合格</td>
<td>0.55合格</td>
<td>0.07合格</td>
<td>0.36合格</td>
</tr>
<tr>
<td>250</td>
<td>0.68合格</td>
<td>0.06合格</td>
<td>0.54合格</td>
<td></td>
</tr>
<tr>
<td>500</td>
<td>0.39合格</td>
<td>0.10合格</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000</td>
<td>0.10合格</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

図1 グラフによるデータの比較（1.003mm）

図2 グラフによるデータの比較（3mm）

図3 グラフによるデータの比較（15mm）
図4 グラフによるデータの比較(50mm)

図5 グラフによるデータの比較(100mm)

4 まとめ

JCSS試験所間比較として実施された、長さ校正試験に参加し、その結果について報告した。ISO/IECのGuide43-1に定められたEn数による判定では、いずれもその絶対値は1以下であり、判定基準を満足しての合格であった。これにより、あらためて当センターの測定能力を客観的に評価することができた。